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Abstract

Contention for shared resources in the memory hierarchy can have a profound effect
on the performance of applications running on high-end computers based on commod-
ity multicore microprocessors. In this paper we describe a methodology, based on
differential performance analysis, to quantify the effect of this contention on parallel
applications. In particular, we characterize the contention for a specific shared re-
source by comparing runs that use different patterns of assigning processes to cores
on multicore nodes. We demonstrate our approach with a subset of the HPCC bench-
marks and the NAS Parallel Benchmarks running on high-end computing platforms
that use four different quad-core microprocessors—Intel Clovertown, Intel Harpertown,
AMD Barcelona, and Intel Nehalem-EP. The results help further our understanding
of the requirements these codes place on their execution environments and also of each
computer’s ability to deliver performance.

1 Introduction

A recent trend in commodity microprocessor design is to put multiple computing cores on
each chip. This approach allows the manufacturers to achieve high aggregate performance
without the power demands of increased clock speeds. As transistor counts increase following
Moore’s Law, we expect to see core counts per chip rising. Designing the computational
and data movement components of a microprocessor is an exercise in compromise as chip
designers aim for good performance across a wide spectrum of applications while staying
within a budget for transistors and power. Inevitably, some resources, such as L2 cache or
memory bandwidth, end up being shared by multiple cores. Like the other components in
the system, the design parameters for these resources, such as size and speed, are decided
using a process of constrained optimization.

Such resource sharing can have a profound effect on the performance of applications
running on some high-end computers. Systems such as the Cray XT5 [7], IBM BladeCen-
ter [11], and SGI Altix ICE [17] take advantage of economies of scale by using commodity
parts such as microprocessors. They typically have very high peak performance when com-
pared to other machines in the same price range. One liability, however, is that contention
for shared resources such as L2 cache or memory bandwidth may be so severe that the
most economical way to run an application leaves half the cores idle [9]. In this paper we
use differential performance analysis to quantify this contention effect for a collection of
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benchmark applications – the HPCC and NAS Parallel Benchmarks. We compare runs that
use different node configurations—patterns of assigning processes to cores in a node—to
measure the performance penalty due to resource contention on individual shared compo-
nents. Our target architectures include high-end computing platforms that use four different
quad-core microprocessors—Intel’s Clovertown, Harpertown, and Nehalem-EP, and AMD’s
Barcelona. The results help further our understanding of the requirements these codes place
on their execution environments and the effect processor and system design decisions have
on application performance.

Although several previous studies have looked at resource contention, in particular, mem-
ory bandwidth contention in multicore systems [1, 2, 5, 6, 8, 12, 14, 16, 18], until this present
work, none has broken this contention down to its individual constituents—contention for
the shared cache, front-side bus, HyperTransport, QuickPath Interconnect, and contention
for memory due to insufficient memory bandwidth. Understanding which resource con-
tention causes the greatest performance penalty on various multicore architectures will be
useful for chip and system designers in determining what incremental changes in hardware
components will provide the biggest boost for application performance.

In the rest of the paper, we introduce a method to isolate contention for shared re-
sources in multicore systems in Section 2 and summarize the experimental environment and
methodology in Section 3. Section 4 is devoted to a detailed differential analysis of the per-
formance of benchmark applications running on selected node configurations. We conclude
in Section 5 and also discuss possible future work.

2 Isolating Resource Contention in Multicore Systems

As a first step in determining the effects of contention in the memory hierarchy of multi-
core systems, we need to understand how resources are shared. Figure 1 shows a high-level
view of two architectural approaches for nodes using two quad-core chips. Figure 1(a) is an
example of a Uniform Memory Access (UMA) design where an off-chip memory controller
(Northbridge) interfaces to the memory. Examples of processor chips using this design are
Intel’s Xeon 5300 series (also called Clovertown) and Xeon 5400 series (also called Harper-
town). In the case of these Intel chips, each processor has two L2 caches and no L3 cache,
each L2 cache being shared by two cores. With this node design, access to external memory
is through a front-side bus (FSB) shared by all four cores on the chip and a common memory
controller shared by both chips. Inter-node communication is through the off-chip memory
controller.

Figure 1(b) depicts a Non-Uniform Memory Access (NUMA) design in which the four
cores access local memory through an on-chip memory controller. Access to remote shared
memory on the node is through a high-speed inter-socket interconnect. Examples of this
approach include nodes designed for AMD’s Opteron 2300 series (Barcelona) and Intel’s
recently released Xeon 5500 series (Nehalem-EP) which use the HyperTransport3 (HT3)
and the QuickPath Interconnect (QPI) respectively for the inter-socket link. In these two
examples, each of the cores in the quad-core chips has an individual L2 cache but shares
the single L3 cache on the chip. Inter-node communication is available to each processor
through its inter-socket link controller (HT3 or QPI).
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Figure 1: Node architectures

2.1 Node Configurations and Labeling

To characterize the impact of contention for shared resources, we have chosen eight different
node configurations for codes to run. These configurations vary in how processes (MPI ranks)
are mapped to cores in a node. Then, we compare the performance on two configurations,
one of which has the increased sharing of a resource compared to the other, with other
factors remaining the same. Using a form of differential performance analysis, we calculate
the difference in performance on the two configurations to assess the penalty for the increased
sharing of the resource. The ultimate goal is to characterize the effect of increased sharing
on the overall performance of the code. We define a code’s contention penalty from the
configuration C1, where a resource is at a base level of sharing, to the configuration C2,
where the sharing is increased, as:

PC1→C2
= (tC2

− tC1
)/tC1

where tC1
and tC2

are the runtimes of the code for the two configurations. In effect, this is
a measure of how much more expensive it is to run the more highly shared configuration. If
the penalty is negative, it means the configuration with increased sharing performed better.

For systems with nodes similar to the UMA-based design in Figure 1(a), the node con-
figurations we are interested in can be described using three orthogonal dimensions: the
number of sockets used per node (S), the number of shared caches used per socket (C), and
the numbers of active processes (e.g. MPI ranks) per shared cache (P ). Mapping these three
dimensions to Cartesian coordinates gives rise to the lattice cube shown in Figure 2, with

1 1 1

1 2 1

1 2 2 2 2 2

2 1 2

2 2 1

2 1 1
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Figure 2: Node configuration lattice for UMA-based

systems

eight unique node configurations. As
labeled in the diagram, a 3-digit
mnemonic, SCP , can be used to des-
ignate the configurations. For exam-
ple, configuration 212 uses two sock-
ets, one shared cache per socket, and
two cores per shared cache, for a to-
tal of four active cores. This can be
depicted as where the dark
squares represent mapped cores, the
light squares represent idle cores, and

3

NAS Technical Report NAS-09-002, November 2009



the gray boxes indicate shared L2 caches. Note that the configurations in the left hand
plane in Figure 2 all use only one socket while those in the right hand plane use two sockets.
Similarly the configurations in the front plane use only one cache per socket while those in
the back use two caches per socket, and the bottom plane configurations have only one core
per cache as opposed to the two cores per cache used by configurations in the top plane.

We must make some accommodations to use the same numbering scheme for systems
with nodes similar to the NUMA-based design in Figure 1(b). In particular, processors in
such nodes have a single L3 cache rather than a pair of L2’s. Strictly speaking, the Cartesian
SCP space should be {1, 2} × {1} × {1, 2, 3, 4}, and a more accurate depiction of the 212
configuration would be . However, for the sake of simplicity in the diagrams and
the discussion, we will use the UMA numbering and diagrams for NUMA architectures as
well. In particular, we will use 122 and 222 to designate NUMA configurations 114 and 214.
Also, it should be noted that when executed on a NUMA-based system, configuration 121
should have the same performance characteristics as 112, as should 221 and 212.

2.2 Contention Groups

To isolate the effects of contention we need to choose pairs of node configurations such that
the level of sharing of a specified resource is increased from one configuration to the other,

Table 1: Resource contention for node configurations

Number of Processes Sharing a Resource
UMA-based systems NUMA-based systems

Node e.g. Clovertown, Harpertown e.g. Barcelona, Nehalem

Configuration L2 FSB UMA-BW L2 L3+MC NUMA-BW

1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 1 1 2
1 2 1 1 2 2 1 2 2
1 1 2 2 2 2 1 2 2
2 2 1 1 2 4 1 2 4
2 1 2 2 2 4 1 2 4
1 2 2 2 4 4 1 4 4
2 2 2 2 4 8 1 4 8

while keeping other
factors the same.
Table 1 presents the
number of processes
in a node that share
the three types of re-
sources in our gen-
eralized UMA and
NUMA architectures
for each of the eight
configurations. For
UMA-based systems
there are three re-
sources of interest: UMA memory bandwidth as provided by the off-chip memory con-
troller (namely UMA-BW), the front-side bus (FSB), and the L2 cache. On our general-
ized NUMA-based systems, there are two types of shared resources to investigate: NUMA
memory bandwidth as provided by the inter-socket interconnect (NUMA-BW) and the local
memory bandwidth supported by the L3 cache and the on-chip memory controller (L3+MC).

An important point in this differential performance analysis approach is to compare two
configurations that isolate the increased sharing and keep other factors unchanged. Table 2
lists the pairs of configurations that can be compared to show isolated contention effects
on the three types of shared resources listed in Table 1. The table shows the difference in
the number of processes sharing the resources for each of selected configuration pairs in the
contention groups. A value of zero indicates no increase in sharing for the given resource.
For example, we can assess the penalty of sharing the off-chip memory controller on UMA-
based systems by comparing the performance of node configuration 111 to that of 211. In
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Table 2: Configuration pairings used to evaluate contention

Shared Resource

Node Configuration UMA node NUMA node Comm.

Combination L2 FSB UMA-BW L2 L3+MC NUMA-BW Effect

1 1 2

1 2 2 2 2 2

2 1 2

2 2 1

2 1 1
1 2 1

1 1 1

111→211 0 0 1 0 0 1
Intra-

& inter-

node

121→221 0 0 2 0 0 2

112→212 0 0 2 0 0 2

122→222 0 0 4 0 0 4

1 1 2

1 1 1 2 1 1

2 1 2

1 2 1

1 2 2 2 2 2

2 2 1

Intra-

node

only

211→121 0 1 0 0 1 0

212→122 0 2 0 0 2 0

2 2 2

2 2 1

2 1 11 1 1

1 1 2

1 2 2

1 2 1

2 1 2

None
121→112 1 0 0 0 0 0

221→212 1 0 0 0 0 0

the former, only one core in the node is active, while in the second each socket has an active
core and they share the bandwidth provided by the memory controller. Thus P111→211 can
be used to understand the effect of sharing memory bandwidth. These groups will be used
in later sections to understand the effect of sharing resources on the performance of the
benchmark applications.

2.3 Effect of Communication

While our current methodology does not isolate resource contention due solely to commu-
nication, message passing does factor into the penalties we calculate. Therefore, in order to
minimize the changes in message passing that are due to configuration differences, we use
a fixed number of MPI processes on each of the eight configurations even if it results in an
increase in the number of nodes used for the run. Thus, for example, an execution measuring
configuration 111 will use twice as many nodes as one measuring 211. Note that while this
approach keeps the message pattern constant, it can change the load on the shared resources
due to communication. That is, even though the pattern of messages between MPI ranks
remains the same, the communication pattern (i.e., the number of intra-socket, inter-socket
and inter-node messages) changes have an effect on the overall performance of the code.
This effect is indicated in the last column of Table 2.

Communication has the most effect on the contention group focused on memory band-
width (the top four rows of Table 2). Here, the number of nodes utilized for the runs
changes when comparing configurations, e.g., 111 versus 211, and thus the inter-node and
intra-node communication pattern changes. For each rank, some off-node messages trans-
form into on-node messages. The exact changes in the message pattern and how they affect
the contention for memory bandwidth—and thus the runtime of the code—is dependent on
the overall message passing pattern. For example, consider an n-rank job when assessing
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the combination 111→211. For a 1D nearest-neighbor ring messaging pattern, the com-
munication for n/2 ranks would change from inter-node to intra-node when comparing the
two configurations. On the other hand, consider the situation of a code using an all-to-all
messaging pattern. For the configuration 111, each rank will be sending out n−1 inter-node
messages while for the configuration 211, each rank will send out n − 2 inter-node message
and one intra-node message. Thus, for each node the total number of inter-node message
would increase from n − 1 to 2n − 4 while the total number of intra-node messages would
go up from 0 to 2. However the maximum distance that a message has to travel would be
reduced since the total number of nodes is halved.

It is important to note that, if there is sufficient local memory to meet the requirements of
each MPI rank, contention for NUMA-bandwidth should mostly come from communications.
In that case, the memory accesses needed for the computation will be local, and thus avoid
the HT3 or QPI links.

The situation for FSB (for UMA nodes) and L3+MC (NUMA nodes) contention groups,
as specified in the middle two rows of Table 2, is different. Here, the inter-node communi-
cation patterns are the same for the configurations in each selected pair. But inter-socket
messages in the less-shared configuration are transformed into intra-socket messages, in-
creasing the contention for FSB or L3+MC as the case may be. This may result in changes
in the total communication time affecting the overall performance of the code. The con-
figurations comparing L2 cache contention (as shown in the last two rows of Table 2) have
no change in communication pattern, since half the ranks are “moved” from one core to
another core on the same socket, e.g., when comparing configuration 121 to 112. Messages
which were independent in the former configuration would share L2 cache in the second, the
exact effect that we would like to characterize.

3 Experimental Approach

Our experiments to test resource contentions were conducted on four parallel systems—
equipped with four types of quad-core processors—using a mix of kernel benchmarks, and
pseudo-application benchmarks. In this section, we first summarize the benchmarks and the
hardware systems used in the experiments, and then describe the experimental methodology,
including the use of hardware counters.

3.1 Benchmark Codes

We selected three kernel benchmarks from the the HPC Challenge (HPCC) benchmark
suite [10] for our experiments. The DGEMM benchmark measures optimum floating-point
performance; the STREAM benchmark component tests memory bandwidth by doing simple
operations on very long vectors; and the PTRANS benchmark tests collective communica-
tions from transposing a matrix.

The NAS Parallel Benchmarks (NPB) [3] are well-known problems for testing the capabil-
ities of parallel computers and parallelization tools. They were derived from computational
fluid dynamics (CFD) codes to mimic the computational core of several numerical meth-
ods, and they reproduce much of the data movement and computation found in full CFD
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codes. For this study, we selected three kernels (MG, CG, and FT), and three simulated
applications (BT, LU and SP) from the NPB3.3 suite [4].

Briefly, MG (multi-grid) tests long- and short-distance communication and is memory-
bandwidth intensive. CG (conjugate gradient) tests irregular memory access and commu-
nication latency. FT (fast Fourier transform) tests all-to-all network communication. The
three application benchmarks (BT: block-tridiagonal solver, LU: seven band block-diagonal
solver, SP: scalar penta-diagonal solver) test nearest neighbor communication. Furthermore,
BT is numerically intensive, LU is sensitive to cache size, and SP has larger a communication-
to-computation ratio than the other two.

3.2 Experimental Testbeds

We utilized four different architectures in this study. The first is an SGI Altix ICE 8200
cluster with each node containing two quad-core Intel Xeon E5355 processors (Clovertown),
interconnected with InfiniBand in a hypercube topology. The second, also an SGI Altix ICE
system, comprises InfiniBand-connected nodes based on two quad-core Intel Xeon X5472
processors (Harpertown). Throughout the paper, we refer to the Clovertown-based system
as “Clovertown-Altix” and the Harpertown-based system as “Harpertown-Altix”. The main
processor and architectural characteristics of these systems are summarized in Table 3.
Compared to Clovertown, Harpertown has a faster clock speed, larger L2 cache, faster front-
side bus (FSB) speed, and more memory bandwidth. Each Clovertown and Harpertown
processor has a pair of L2 caches that are each shared by two cores; the two processor types
also have a similar bus-based architecture. Communication between the two processors in a
node has to go through the FSB and a shared memory controller (Northbridge). Accessing
the 8GB memory in one node from each core is relatively uniform.

Table 3: Architectural and execution environment summaries of the four parallel systems

Machine Clovertown-Altix Harpertown-Altix Barcelona-Cluster Nehalem-Altix

Model SGI Altix SGI Altix Custom-made SGI Altix
ICE 8200 ICE 8200EX Opteron Cluster ICE 8200EX

Number of nodes 512 >1024 128 128
Cores per node 8 8 8 8

Processor type Intel Xeon X5355 Intel Xeon E5472 AMD Opteron 2354 Intel Xeon X5570
(Clovertown) (Harpertown) (Barcelona) (Nehalem-EP)

Processor speed 2.66GHz 3.0GHz 2.2GHz 2.93GHz
L2 cache / cores sharing 4MB / 2 6MB / 2 512KB / 1 256KB / 1
L3 cache / cores sharing – – 2MB / 4 8MB / 4
Memory per node 8GB 8GB 16GB 48GB
FSB speed 1333MHz 1600MHz – –
Memory type FB-DDR2 FB-DDR2 DDR2 DDR3
Memory bandwidth 21.3GB/s read 25.6GB/s read 10.7GB/s 25.6GB/s

10.7GB/s write 12.8GB/s write read/write read/write
Intersocket link Northbridge Northbridge HyperTransport3 QuickPath

(NB) (NB) (HT3) Interconnect (QPI)
HT3/QPI bandwidth – – 2×16GB/s 25.6GB/s

Compiler Intel-10.1/11.0 Intel-10.1/11.0 GCC-4.1/PGI-8.0 Intel-11.0
MPI library mpt-1.19 mpt-1.19/1.23 mvapich2-1.2 mpt-1.23

The third parallel system is a custom-made AMD Opteron cluster connected with a
Mellanox InfiniBand switch. Each of the nodes contains two quad-core AMD Opteron 2354
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processors (Barcelona). We refer to this system as “Barcelona-Cluster” in this paper. The
four cores in an Opteron processor share a 2MB L3 cache, and each core has its own 512KB
local L2 cache. The cache size per core is relatively small compared to the Intel processors.
Each Opteron processor has an on-chip memory controller that connects directly to its local
memory. Additionally, the two processors on a node are connected via HyperTransport3
(HT3), allowing for non-uniform memory access (NUMA) to remote memory on the node.
There is a total of 16GB of memory on each node. The advantage of this design compared
to the two UMA-node-based systems above is that there is less memory contention in the
system and it is scalable.

The fourth parallel system, a newly released SGI Altix 8200EX system based on the
quad-core Intel Xeon X5570 processor (Nehalem-EP), is referred to as “Nehalem-Altix” in
this paper. Nehalem is a complete revamp of Intel’s previous generation of microprocessor
architecture. Each Nehalem processor contains four cores with simultaneous multithreading
or hyperthreading capability, which enables two threads per core. An on-chip memory con-
troller connects directly to local DDR3 memory through three channels. Communication
between processors in a node and to the I/O hub is through the Intel QuickPath Intercon-
nect (QPI), which replaces the bus-based design of older Intel processors. Each processor
contains an 8MB L3 cache shared by the processor’s four cores. Architecturally, the Nehalem
processor is very similar to the AMD Opteron processor; however, it has much improved
processor speed, cache size, and memory bandwidth. Our test system contains 48GB of
memory per node. In order to simplify the analysis, we did not use hyperthreading or the
TurboBoost capabilities of the Nehalem processor.

3.3 Methodology

Our experiments start with low-level microbenchmarks from HPCC to establish baseline
characteristics of resource contention on different multicore systems using differential per-
formance analysis. We then apply this technique to NPB results, and use hardware counter
measurements, when available, to better understand the results and to support our inter-
pretations.

For the differential performance analysis, we measure the performance of the above codes
on a fixed number of processes for all eight configurations described in Section 2. The number
of processes is chosen such that a given problem can fit into the memory on a node, and
both intra-node and inter-node communications can be tested. In the actual runs, we used
16 processes for HPCC and NPB. Due to different labeling of core locations on the Intel
and AMD processors, we had to carefully choose the list of core id’s used for each node
configuration, avoiding core 0 when possible to minimize the effect of kernel daemons.

Modern microprocessors such as Xeon and Opteron include a rich set of hardware coun-
ters for performance monitoring and measurement. We used the PerfSuite performance
measurement tool [13] from NCSA installed on the Clovertown-Altix and Harpertown-Altix.
PerfSuite relies on the PAPI profiling library [15] for accessing hardware counters. To reduce
perturbation from calls to underlying MPI libraries, SGI has developed a tool called MPIn-
side that reports MPI statistics and works together with PerfSuite to suppress hardware
counter increments while inside MPI calls in a program. In order to generate the penalty
values from hardware counters, we use a formula similar to the one used for the perfor-
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mance penalty as described in Section 2. We only present data from the Clovertown-Altix
and Harpertown-Altix since these tools were not available on the other two systems.

4 Experimental Results and Contention Analysis

In this section we present the results of our differential performance analysis of shared
resource contention. We will first present the results from the HPCC and NAS Parallel
benchmarks obtained on UMA-based systems and then the results from runs on the NUMA-
based systems. We then correlate the penalties based on timing measurements to penalties
based on hardware counter data for a subset of the experimental runs.

Each of the run configurations was repeated at least five times to reduce noise from
timing variations; we then used median values to calculate the penalties. The medians
of the rates (Gflops/sec or GBytes/sec) reported by the individual benchmarks over the
multiple runs are given in Tables 6 and 7 of the Appendix. The inverses of the rates shown
in the Appendix are proportional to timing; those inverses are used to calculate performance
penalties presented in this section for each of the contention groups described in Section 2.

4.1 Results on UMA Systems

Table 4 presents the percentage performance penalties for the various node configurations
using the HPCC benchmarks and NPBs on the two UMA test systems, the Clovertown-
Altix and the Harpertown-Altix that were described in the previous section. Analyzing
the results for HPCC’s DGEMM, we see only small performance penalties as resource con-
tention is increased, indicating that both platforms have sized the shared resources suffi-
ciently for the floating-point intensive benchmark. One reason for this is that DGEMM uses
the BLAS library routines, which have been extensively optimized for cache and memory
usage on each of the systems. The results do show a small but consistent FSB penalty on
the Clovertown-Altix and the Harpertown-Altix when going from 2 cores to 4 cores using
the bus—(211→121) and (212→122).

The STREAM results show a considerable dependence on the FSB of UMA systems.
This is not surprising because the purpose of the benchmark is to put extreme pressure on
the memory bus. The 4-core configurations (212→122) show a larger impact from contention
than the 2-core configurations (211→121). Compared to STREAM Copy, there is a small but
noticeable increase in FSB contention for STREAM Triad as a result of additional reads.
It is interesting to note that the Harpertown-Altix exhibits much more FSB contention
than the Clovertown-Altix. However, the Clovertown-Altix shows an additional penalty for
UMA-bandwidth (Northbridge) contention. Relatively small UMA-bandwidth penalties on
the Harpertown-Altix indicate that this system has adequate UMA-bandwidth to support
the FSB traffic.

There is fairly little L2 contention in the STREAM results. Given that there is no reuse
of cached values in the benchmark, the penalty that we see is likely due to contention for the
interface between the L2 and the FSB (the resource labeled “FSB Interface” in Figure 1(a)).

In contrast, the PTRANS results on the two UMA systems show a pattern that is in-
between the DGEMM and STREAM benchmarks. The FSB contention from (212→122)
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Table 4: Percentage performance penalty observed for the contention groups on UMA-based

systems

Clovertown-Altix
Contention (C1→C2) DGEMM ST Copy ST Triad PTRANS BT CG FT LU MG SP

(111→211) 0% 14% 24% 11% 4% 7% 10% 3% 9% 11%
UMA-BW (121→221) 1% 25% 24% 7% 8% 17% 18% 7% 18% 19%

(Northbridge) (112→212) 1% 22% 22% 8% 9% 18% 22% 6% 20% 20%
(122→222) 2% 24% 24% 21% 16% 32% 11% 12% 26% 23%

(211→121) 1% 29% 44% 1% 5% 7% 7% 5% 11% 17%
FSB

(212→122) 2% 56% 56% 26% 15% 26% 19% 21% 51% 48%

(121→112) 1% 5% 3% 0% -1% 1% 3% 16% 18% 9%
L2

(221→212) 1% 2% 1% 1% 0% 1% 6% 15% 20% 10%

Harpertown-Altix
Contention (C1→C2) DGEMM ST Copy ST Triad PTRANS BT CG FT LU MG SP

(111→211) 0% 5% 3% -4% 2% 4% -2% 2% 7% 9%
UMA-BW (121→221) 0% 3% 1% 5% 3% 4% 20% 4% 9% 16%

(Northbridge) (112→212) 0% 3% 1% 4% 4% 5% 16% 3% 9% 12%
(122→222) 0% 3% -2% 9% 3% 1% -3% 4% 6% 9%

(211→121) 1% 69% 81% 28% 16% 39% 12% 15% 48% 38%
FSB

(212→122) 3% 81% 88% 44% 37% 65% 22% 27% 65% 53%

(121→112) 1% 5% 5% -1% 8% 7% 14% 6% 22% 29%
L2

(221→212) 1% 6% 5% -1% 9% 7% 10% 5% 23% 24%

is about half of that for STREAM. On the other hand, the (211→121) penalty on the
Clovertown-Altix is near zero. There are noticeable penalties in the UMA-bandwidth con-
tention group, although no obvious pattern can be discerned. Note that PTRANS is dom-
inated by all-to-all communication in the global matrix transpose. However, when deter-
mining UMA-bandwidth contention, our method does not distinguish between contributions
from local memory access and remote communication. But, we speculate that, in the case
of PTRANS, most of the UMA-bandwidth contention is a result of communication require-
ments.

In contrast to the HPCC microbenchmarks, the NPB results illustrate how more real-
istic applications might respond to resource contention. On the Harpertown-Altix, except
for two points for FT and SP, all six benchmarks show a relatively small penalty for UMA-
bandwidth contention, indicating that adequate memory bandwidth is available on the sys-
tem to keep up with the increase in core counts. The trend for FT should correlate to that for
a benchmark that tests both intra-node and inter-node communications via large collective
MPI communication. For FT and SP on the Harpertown-Altix, we observe considerable con-
tention increase in going from one socket to two sockets (121→221 and 112→212), indicating
that communication between sockets within a node causes more performance penalty than
communication going out of a node. However, negative penalties shown in the other two
configuration pairs (111→211 and 122→222) for FT mean that intra-node communication is
less costly than inter-node communication for these cases. Contention for UMA-bandwidth
on the Clovertown-Altix increases for most cases as compared to the Harpertown-Altix, in-
dicating that there is less memory bandwidth available on the Clovertown-based node. We
observe a gradual increase in performance penalty going to a configuration with more active
cores on the Clovertown-Altix.

On the Harpertown-Altix, the largest performance penalties come from FSB contention,
for example more than 50% for memory-bandwidth sensitive benchmarks (MG and SP), and
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∼30% for numerically intensive benchmarks (BT and LU). Irregular memory access in CG
also stresses the FSB. Again, configurations with more active cores (212→122) put much
more pressure on FSB than those with less active cores (211→121). In general, the FSB
contention on the Clovertown-Altix is smaller than on the Harpertown-Altix. The NPB
results are within the upper bounds set by the STREAM benchmarks.

We observe sizable L2 cache contention on both the Clovertown-Altix and the Harpertown-
Altix. In particular, except for LU, penalties associated with L2 cache contention are larger
on the Harpertown-Altix than on the Clovertown-Altix, even though the former has a larger
L2 cache. For most cases, larger L2 cache size differences in the two tested configurations
(3MB on a Harpertown and 2MB on a Clovertown) result in larger performance penalty.
On the other hand, LU is sensitive to the actual cache size and needs more than 2MB of
cache per rank to run effectively in the current case. Thus, there is a larger difference be-
tween running with 4MB and 2MB (on a Clovertown) than there is when changing from
6MB to 3MB (on a Harpertown). Note also that MG and SP, which require more memory
bandwidth, also exhibit larger L2 cache contention.

4.2 Results on NUMA Systems

Table 5 presents the percentage performance penalties for the various node configurations
using the HPCC benchmarks and NPBs on the two NUMA test systems, the Barcelona-
Cluster and the Nehalem-Altix. As expected, we see no penalty for the L2 contention
group for all benchmarks. This is due to the fact that configuration pairs (121→112) and
(221→212) have identical sharing characteristics on the two NUMA-based systems, where
L2 cache is private to each processor core. It is also not surprising that DGEMM exhibits
insensitivity to resource contention on these systems, just as was observed on the UMA-based
systems.

Table 5: Percentage performance penalty observed for the contention groups on NUMA-

based systems

Barcelona-Cluster
Contention (C1→C2) DGEMM ST Copy ST Triad PTRANS BT CG FT LU MG SP

(111→211) 0% 3% 3% 18% 0% 5% 4% -4% 2% 2%
NUMA-BW (121→221) 0% 1% 2% 10% 1% 4% 3% -1% 3% 2%

(HT3) (112→212) 0% 1% 2% 8% 1% 4% 3% 0% 3% 2%
(122→222) 0% 6% 7% 2% 1% 6% 3% 0% 1% 1%

(211→121) 0% 29% 22% 6% 3% 1% 11% 17% 29% 19%
L3+MC

(212→122) 1% 76% 69% 21% 14% 7% 26% 88% 57% 54%

(121→112) 0% 0% 0% 1% 0% 0% 0% 0% 0% 0%
L2

(221→212) 0% 0% 0% -1% 0% 0% 0% 0% 0% 0%

Nehalem-Altix
Contention (C1→C2) DGEMM ST Copy ST Triad PTRANS BT CG FT LU MG SP

(111→211) 0% 1% 1% 4% 0% -1% -17% 0% -2% 2%
NUMA-BW (121→221) 0% 2% 2% 43% 3% 2% 13% 0% 4% 21%

(QPI) (112→212) 0% 2% 2% 41% 0% 2% 13% 0% 4% 22%
(122→222) 1% 1% 0% -13% -2% 5% 7% 0% 0% -9%

(211→121) 0% 18% 57% 7% 5% 7% 6% 6% 34% 38%
L3+MC

(212→122) 1% 85% 107% 10% 16% 32% 38% 27% 116% 60%

(121→112) 0% 0% 0% 1% 1% 0% 0% 0% 0% 0%
L2

(221→212) 0% 0% 0% 0% -2% 0% 0% 0% 0% 1%

11

NAS Technical Report NAS-09-002, November 2009



In contrast to DGEMM, the STREAM results present a different picture. There are sub-
stantial penalties in the middle group (211→121 and 212→122), a measure of contention on
the shared L3 cache and memory controller. In particular on the Nehalem-Altix, (212→122)
shows a penalty of more than 100% for STREAM Triad, meaning that the aggregate band-
width seen by all active cores actually went down when the number of cores used in a node
went from four to eight. It seems that there may be a threshold for simultaneous memory
access beyond which accesses interfere with each other to such an extent that aggregate per-
formance decreases. The contention for L3+MC on the Barcelona-Cluster, although smaller,
is roughly proportional to the number of active cores involved. Except for the (122→222)
pair on the Barcelona-Cluster, we observe only marginal penalties (no more than 3%) in
the NUMA-bandwidth contention for STREAM on both systems through either Hyper-
Transport3 (HT3) or QuickPath Interconnect (QPI). This is consistent with the fact that
both Barcelona and Nehalem processors have on-chip memory controllers dedicated to ac-
cessing local memory and that STREAM benchmarks do not involve any cross-processor
communication for remote data.

It is worthwhile to point out that during our first runs on the Barcelona-Cluster we
observed substantial HT3 contention for STREAM (more than 30% in 122→222). On
investigation, we found that the NUMA support was disabled in the operating system setup.
This resulted in the OS using the two sockets on the node as if they had uniform access
to both local and remote memory on the node. The end result was that the bandwidth
available to each core in a fully populated configuration (222) was much less than in a half-
populated configuration (122) and the memory traffic (loads and stores) crossed over the
NUMA link (HT3) in a node. With a NUMA-enabled kernel installed on the system, we no
longer see such a contention on the HT3 link.

The communication-intensive PTRANS benchmark demonstrates sizable contention on
the NUMA-bandwidth for both systems. On the Barcelona-Cluster, configurations involving
more off-node communication through InfiniBand performed better than those involving
more intra-node communication through HT3. The results for the Nehalem-Altix show
a different pattern. Penalties increase dramatically from 2-core configurations (121 and
112) to 4-core configurations (221 and 212), meaning that pressure on QPI from intra-node
communication outweighed the performance gain from shorter inter-node communication
distance for the latter cases. However, a negative penalty for (122→222) indicates that
intra-node communication for the fully populated (222) configuration was actually more
efficient than off-node communication for the half-populated (122) configuration. Thus,
contention for NUMA-bandwidth is very sensitive to the balance of intra-node and inter-node
communications. PTRANS shows some contention in the L3+MC data on both systems,
but the effect is much less than that for STREAM.

The NPB results show very small NUMA-bandwidth contention on the Barcelona-Cluster.
Only CG (5%) and FT (4%) show an HT3 penalty larger than 3%. On the Nehalem-Altix,
we see a demand for the QPI traffic in both FT and SP as a result of larger MPI com-
munication volume. FT shows a negative performance penalty in going from 111 to 211.
On Nehalem-based SGI Altix 8200EX, there is one extra InfiniBand switch hop going from
8 nodes to 16 nodes, which could substantially increase the all-to-all MPI communication
cost in the 111 configuration for FT. A smaller or even negative penalty is also observed in
the (122→222) group for both FT and SP. In fact, the performance pattern is very similar
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to that for PTRANS and to the results observed on the Harpertown-Altix where a similar
network is used. Other benchmarks (BT, CG, LU, MG) show very small demand on QPI
traffic.

On both the Barcelona-Cluster and the Nehalem-Altix, the increased requirement for
L3 cache and local memory bandwidth is visible as active cores increase, especially for
LU on the Barcelona-Cluster and MG and SP on both systems. It is also surprising that
the (212→122) result for MG shows a penalty of more than 100% on the Nehalem-Altix,
as seen earlier for STREAM. The much larger (212→122) penalty observed for the LU
benchmark on the Barcelona-Cluster can be attributed to the cache-size sensitive nature
of this benchmark. LU performs much better on systems with larger L3 cache processors
(8MB for Nehalem versus 2MB for Barcelona). Overall, local memory bandwidth is the
major source of contention on the NUMA-based systems.

4.3 Hardware Counters

In order to aid our understanding of the contention analysis, we collected hardware perfor-
mance counters for the NPBs for each of the eight configurations on the UMA systems –
the Clovertown-Altix and the Harpertown-Altix. (Unfortunately, the infrastructure was not
available on the two NUMA systems for us to collect similar data.) A quick review of this
data indicates that all eight configurations have similar counts from a number of counters,
including Floating Point Operations, TLB misses, and Instructions Graduated. Hence, we
have not included the data from these counters here. Notable counters that do have direct
impact on the analysis of contention results are Level 2 Total Cache Misses (L2 TCM) and
Stalls on Any Resource (RES STL).

In Figure 3 we compare the contention penalty function of Section 2 applied to both
counter data and timing data. In the first two bands of Figure 3, we graph the percentage
penalty values derived from hardware counters L2 TCM and RES STL, respectively. In the
third band we show an analogous graph that uses the time penalties of Table 4. In the top
band of Figure 3, we see a strong correlation of L2 TCM with the L2 contention group time
penalties of the bottom band. For example, the large L2 penalty for LU on the Clovertown-
Altix and for MG and SP on both systems are clearly visible in the L2 cache miss penalties
for (121→112) and (221→212) in the top band. Most of the other configurations show very
small influence from L2 cache misses except for MG (in 212→122) and FT (in 122→222).
Negative values indicate that FT had fewer L2 total cache misses in the fully populated
configuration (222) than in other configurations. This result correlates well with the smaller
penalty observed in the similar configurations in the third band of Figure 3. Note that in
going from configuration 122 to 222 we are transforming some inter-node communication
to intra-node communication as discussed in Section 2.3. The SGI message passing library
used for the test cases optimizes intra-node communication by using shared memory on the
node. Thus, one possible explanation for the negative penalties is that the direct memory
access for intra-node communication results in far less L2 cache misses than when dealing
with inter-node communication.

Resource stalls (RES STL) can come from a number of sources, including L2 cache misses
and loads/stores stalls. Penalties computed using this counter (shown in the middle band of
Figure 3) correlate very well with the actual application performance (the bottom band of
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Figure 3: Percentage penalty derived from hardware counters for the NPBs

Figure 3). The dominant penalty (∼40%) from RES STL is a result of the FSB contention for
all benchmarks. On the Clovertown-Altix, the contention from UMA bandwidth contributes
nearly 20% to the stall cycles. Additional L2 cache misses clearly increase the stall cycles
as well, for MG, LU, and SP.

4.4 Discussion

Analysis of the experimental data allows us to make note of some general trends regard-
ing both the architectures and benchmarking applications we used. For example, we can
see general trends in Table 4 that illustrate how resource contention was reduced in go-
ing from Clovertown-based nodes to Harpertown-based ones. Clearly the UMA-bandwidth
(Northbridge) improvement had a major impact on our benchmarks. The impact of the
larger L2 caches of the later chips is also noticeable. These changes, which significantly
improved the absolute performance (see Appendix), resulted with the FSB becoming more
of a performance bottleneck.

The transition from UMA-based nodes to NUMA-based nodes results in the contention
moving to the L3 cache and the local memory controller. With the exception of codes that
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do a lot of communication, there seems to be relatively little stress on the intersocket links
(HT3 and QPI). This is not surprising as nearly all of the non-message-passing memory
accesses made in our benchmarks are local.

While our method does not allow us to directly separate the effect of L3 size from
contention for the local memory controller on the NUMA systems, we can use the STREAM
benchmarks to make some observations. In particular, as they have much less dependence
on cache, contention uncovered by those benchmarks is mostly due to limitations in getting
data through the local memory controller. While in absolute terms the memory bandwidth
achievable by a code on Nehalem is vastly superior to that on Harpertown (see Table 6 in
the Appendix), it is nonetheless still the major bottleneck for some codes (e.g., MG).

From the perspective of applications, optimizing both cache and memory usage is the
key to reducing resource contention (as illustrated by the well-tuned DGEMM). In gen-
eral, improved memory bandwidth is still the most desired performance factor for many
applications.

5 Conclusions

Contention for shared resources in the memory hierarchy of multicore processors can have
a profound effect on the performance of applications running on high-end computers. In
this paper we introduce a way of using differential performance analysis to quantify this
contention effect for a collection of parallel benchmarks and applications. In particular, by
comparing runs that use different patterns of assigning processes to cores, we have charac-
terized the contention for L2 cache, the memory bus for a socket (FSB if UMA and L3+MC
for NUMA), and the memory bus for multiple sockets (memory controller on UMA and
HT3/QPI on NUMA) on high-end computing platforms that use four different quad-core
microprocessors—Intel Clovertown, Intel Harpertown, AMD Barcelona, and Intel Nehalem-
EP. In our experiments we ran the HPCC benchmarks and the NAS Parallel benchmarks.
As part of the experimental process, we also collected hardware counters for some of the
runs so that we could validate our findings.

In general terms, the dominant contention factor we observed was the bandwidth avail-
able on the memory channels for a single socket—i.e., FSB on Harpertown and Clovertown,
and L3+MC on Barcelona and Nehalem. Furthermore it was surprising to see greater than
100% L3+MC contention penalty in some cases (e.g., STREAM and MG) on the Nehalem
processor. Some L2 cache contention was observed on Clovertown and Harpertown. When
looking at the results for the NUMA-style shared memory nodes, we saw that overall system
performance improved over the UMA-style nodes due to the integrated memory controller,
which enables access to local memory without contention from the other socket.

In the future, we would like to extend this work in several ways. First, we are in the
process of applying this methodology to a collection of production applications. We expect
to report on our results soon. We would also like to extend the methodology, so that we
can isolate the effect of inter-node communication and study the sensitivity of application
performance to sharing network latency and bandwidth. We would also like to generalize
it to accommodate future node architectures including increasing number of cores per node
and added types of shared resources.
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Appendix: Timings for Configurations of the Benchmarks

This Appendix presents the raw performance data for the runs of the HPCC benchmarks and the NAS Par-
allel Benchmarks used in this paper. Each benchmark was run at least 5 times on each of the configurations
of Section 2 on each of the architectures described in Section 3. We then present the median value reported
over the multiple runs.

Table 6 shows the performance data obtained for the HPCC benchmarks. Note that the values reported
are actually rates (Gflops/sec for DGEMM and GBytes/sec for STREAM Copy, STREAM Triad, and
PTRANS) and that higher values indicate better performance. Similarly, Table 7 shows the median rates
(Gflops/sec) obtained for the six benchmarks from the NPB3.3-MPI suite for problem size Class C. Again,
higher Gflops/sec values indicate better performance.

Table 6: Performance of HPCC benchmarks for each of the 8 configuration runs using 16 processes. The
units are Gflops/sec for DGEMM and GBytes/sec for STREAM Copy, STREAM Triad, and PTRANS.

Clovertown-Altix Harpertown-Altix
conf DGEMM ST Copy ST Triad PTRANS DGEMM ST Copy ST Triad PTRANS
222 9.054 0.612 0.680 0.912 10.521 0.922 0.990 1.238
122 9.194 0.760 0.842 1.106 10.567 0.948 0.967 1.351
212 9.421 1.187 1.309 1.392 10.836 1.718 1.818 1.943
221 9.541 1.210 1.328 1.407 10.985 1.822 1.912 1.920
112 9.478 1.444 1.595 1.508 10.841 1.772 1.838 2.026
121 9.598 1.518 1.649 1.509 11.000 1.869 1.925 2.007
211 9.680 1.959 2.373 1.530 11.133 3.154 3.476 2.578
111 9.706 2.224 2.952 1.702 11.137 3.324 3.589 2.467

Barcelona-Cluster Nehalem-Altix
conf DGEMM ST Copy ST Triad PTRANS DGEMM ST Copy ST Triad PTRANS
222 7.935 1.446 1.605 1.479 10.965 4.620 3.304 4.604
122 7.938 1.534 1.724 1.506 11.019 4.675 3.319 4.028
212 7.984 2.698 2.909 1.825 11.159 8.655 6.863 4.442
221 7.988 2.697 2.908 1.809 11.159 8.665 6.866 4.429
112 7.995 2.736 2.970 1.968 11.153 8.867 6.971 6.261
121 7.997 2.727 2.962 1.988 11.153 8.864 6.973 6.316
211 7.999 3.519 3.623 2.105 11.205 10.427 10.946 6.745
111 7.998 3.614 3.743 2.487 11.201 10.526 11.041 7.028

Table 7: Performance of NPB Class C for each of the 8 configuration runs using 16 processes. The unit
is Gflops/sec for all six benchmarks.

Clovertown-Altix Harpertown-Altix
conf BT CG FT LU MG SP BT CG FT LU MG SP
222 10.446 1.807 5.132 9.688 3.858 2.877 15.205 2.329 7.348 15.445 6.887 4.134
122 12.144 2.389 5.694 10.878 4.852 3.537 15.602 2.355 7.106 15.989 7.292 4.501
212 13.983 3.007 6.796 13.176 7.335 5.218 21.333 3.897 8.650 20.296 12.032 6.888
221 14.022 3.026 7.236 15.184 8.790 5.734 23.190 4.170 9.493 21.351 14.762 8.526
112 15.214 3.535 8.287 13.940 8.772 6.236 22.164 4.085 10.015 20.974 13.125 7.699
121 15.132 3.553 8.557 16.221 10.386 6.825 23.867 4.354 11.422 22.139 16.035 9.914
211 15.953 3.816 9.171 17.035 11.503 8.018 27.676 6.048 12.808 25.361 23.655 13.725
111 16.608 4.067 10.046 17.560 12.493 8.923 28.158 6.308 12.511 25.830 25.412 15.009

Barcelona-Cluster Nehalem-Altix
conf BT CG FT LU MG SP BT CG FT LU MG SP
222 16.193 3.576 7.524 9.339 7.562 5.253 30.965 7.353 13.493 28.171 17.720 12.162
122 16.384 3.802 7.770 9.340 7.627 5.300 30.263 7.720 14.478 28.306 17.791 11.122
212 18.722 4.071 9.778 17.533 11.995 8.155 35.163 10.161 19.965 35.849 38.505 17.756
221 18.725 4.086 9.780 17.604 11.996 8.158 34.367 10.158 19.913 35.841 38.489 17.889
112 18.905 4.236 10.105 17.566 12.301 8.298 35.142 10.348 22.611 35.876 39.964 21.601
121 18.910 4.240 10.112 17.502 12.324 8.299 35.504 10.349 22.555 35.876 39.909 21.591
211 19.568 4.294 11.180 20.400 15.861 9.878 37.188 11.029 23.857 38.041 53.464 29.801
111 19.655 4.501 11.591 19.509 16.223 10.065 37.309 10.963 19.867 38.102 52.266 30.504
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